Codes & Standards - Purchase
IEC TS 62607-6-21:2022
Nanomanufacturing - Key control characteristics - Part 6-21: Graphene-based material - Elemental composition, C/O ratio: X-ray photoelectron spectroscopy
SKU: iec_062184_112602
Published by IEC
Publication Year 2022
1.0 Edition
27 pages
Product Details
IEC TS 62607-6-21:2022 establishes a standardized method to determine the chemical key control characteristics
- elemental composition, and
- C/O ratio
for powders of graphene-based materials by
- X-ray photoelectron spectroscopy (XPS).
The elemental composition (species and relative abundance) is derived by the elemental binding energy and integral peak area at corresponding portion of XPS spectrum.
- The elemental composition refers to main elements in graphene powders, typically including carbon (C), oxygen (O), nitrogen (N), sulfur (S) , chloride (Cl) and silicon (Si).
- This document is applicable to graphene powders consisting of graphene, bilayer graphene (2LG), trilayer graphene (3LG), few-layer graphene (FLG), graphene nanoplate (GNP), reduced graphene oxide (rGO), graphene oxide (GO), and functionalized graphene powders.
- Typical application areas are the microelectronics and thermal management industries, e.g. batteries, integrated circuits, high-frequency electronics. This document can be used by manufacturers in research and development and by downstream users for product selection.
- elemental composition, and
- C/O ratio
for powders of graphene-based materials by
- X-ray photoelectron spectroscopy (XPS).
The elemental composition (species and relative abundance) is derived by the elemental binding energy and integral peak area at corresponding portion of XPS spectrum.
- The elemental composition refers to main elements in graphene powders, typically including carbon (C), oxygen (O), nitrogen (N), sulfur (S) , chloride (Cl) and silicon (Si).
- This document is applicable to graphene powders consisting of graphene, bilayer graphene (2LG), trilayer graphene (3LG), few-layer graphene (FLG), graphene nanoplate (GNP), reduced graphene oxide (rGO), graphene oxide (GO), and functionalized graphene powders.
- Typical application areas are the microelectronics and thermal management industries, e.g. batteries, integrated circuits, high-frequency electronics. This document can be used by manufacturers in research and development and by downstream users for product selection.