CSA Preface
Standards development within the Information Technology sector is harmonized with international standards development. Through the CSA Technical Committee on Information Technology (TCIT), Canadians serve as the Canadian Advisory Committee (CAC) on ISO/IEC Joint Technical Committee 1 on Information Technology (ISO/IEC JTC1) for the Standards Council of Canada (SCC), the ISO member body for Canada and sponsor of the Canadian National Committee of the IEC. Also, as a member of the International Telecommunication Union (ITU), Canada participates in the International Telegraph and Telephone Consultative Committee (ITU-T).
This International Standard was reviewed by the CSA TCIT under the jurisdiction of the Strategic Steering Committee on Information Technology and deemed acceptable for use in Canada. (A committee membership list is available on request from the CSA Project Manager.) From time to time, ISO/IEC may publish addenda, corrigenda, etc. The CSA TCIT will review these documents for approval and publication. For a listing, refer to the CSA Information Products catalogue or CSA Info Update or contact a CSA Sales representative. This Standard has been formally approved, without modification, by the Technical Committee and has been approved as a National Standard of Canada by the Standards Council of Canada.
Scope
This International Standard can be used with benefits on all kinds of platform.
This International Standard's most immediate interest is for deploying portable applications on small footprint devices.
This International Standard provides dramatic savings of dynamic memory and execution time without sacrificing any of the flexibility usually attached to the use of non-pre-linked portable code. This International Standard is especially important to provide a complete solution to execute portable programs of which code size is bigger than the available dynamic memory.
This International Standard is also very important when fast reactivity of programs is important. By avoiding the extra-processing related to loading into dynamic memory and formatting classes at runtime, this International Standard provides a complete answer to the problem of class-loading slow-down. These benefits are particularly interesting for small devices supporting financial applications. Such applications are often complex and relying on code of significant size, while the pressure of the market often imposes to these devices to be of a low price and, consequently, to be very small footprint platforms.
In addition, to not impose unacceptable delays to customers, it is important these applications do not waste time in loading classes into dynamic memory when they are launched but, on the contrary, to be immediately actively processing the transaction with no delay. When using smart cards, there are also some loose real-time constraints that are better handled if it can be granted that no temporary freezing of processing can occur due to class loading.
This International Standard can also be of great benefit for devices dealing with real-time applications. In this case, avoiding the delays due to class loading can play an important role to satisfy real-time constraints.